

TITLE:

Effects of trunk lean and foot lift exercises in sitting position on abdominal muscle activity and the contribution rate of transversus abdominis

AUTHOR(S):

Motomura, Yoshiki; Tateuchi, Hiroshige; Komamura, Tomohito; Yagi, Yuta; Nakao, Sayaka; Ichihashi, Noriaki

CITATION:

Motomura, Yoshiki ...[et al]. Effects of trunk lean and foot lift exercises in sitting position on abdominal muscle activity and the contribution rate of transversus abdominis. European Journal of Applied Physiology 2021, 121(1): 173-181

ISSUE DATE: 2021-01

URL: http://hdl.handle.net/2433/261777

RIGHT:

This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-020-04508-0; The full-text file will be made open to the public on 30 September 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'; この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。; This is not the published version.

1	Effects of trunk lean and foot lift exercises in sitting position on abdominal muscle activity
2	and the contribution rate of transversus abdominis
3	
4	Yoshiki Motomura ¹ , Hiroshige Tateuchi ¹ , Tomohito Komamura ² , Yuta Yagi ³ , Sayaka Nakao ¹ , Noriaki
5	Ichihashi ¹
6	
7	1. Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
8	2. Division of Rehabilitation Medicine, Chiba University Hospital, Chiba, Chiba, Japan
9	3. Department of Rehabilitation, Rinku General Medical Center, Izumisano, Osaka, Japan
10	
11	Corresponding author
12	Yoshiki Motomura (E-mail: motomura.yoshiki.32z@kyoto-u.jp)
13	
14	ORCID
15	Yoshiki Motomura: 0000-0002-6544-0678
16	Sayaka Nakao: 0000-0001-5714-0336
17	Noriaki Ichihashi: 0000-0003-2508-2172
18	
19	

20 Acknowledgements

21	The authors	gratefully	acknowledg	e all 1	participants	involved	in this stud	y. This stud	ly was no	t funded	by a	any

22 institutions, agencies, or companies.

23

- 24 Declarations
- 25 **Funding:** Not applicable.
- 26 **Conflicts of interest:** Not applicable.
- 27 Ethics approval: All the procedures performed in the studies involving human participants were in accordance
- 28 with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki
- 29 declaration and its later amendments or comparable ethical standards. This study was approved by the ethics
- 30 committee of Kyoto University Graduate School and the Faculty of Medicine (R0546-2)
- 31 Consent: Informed consent was obtained from all individual participants involved in the study.
- 32 Data and/or Code availability: All data generated or analysed during this study are included in this published
- 33 article.
- 34 Authors' contribution statements: YM, HT, SN, and NI conceived and designed the research. YM, TK, and YY
- 35 conducted the experiments. YM, HT, and NI analyzed the data. YM, HT, SN, and NI wrote the manuscript. All
- 36 the authors have read and approved the manuscript.

37

39 Abstract

40	Purpose: Abdominal hollowing exercise has been recommended to improve trunk stability. Trunk lean and foot
41	lift exercises while sitting may easily promote abdominal muscle activity even in people who cannot perform
42	abdominal hollowing consciously. The purpose of the present study was to examine the changes in abdominal
43	muscle activity and contribution rate of the transversus abdominis muscle (TrA) when leaning the trunk and lifting
44	the foot during sitting.
45	Methods: The muscle stiffnesses (indicators of muscle activity) of the right rectus abdominis, external oblique,
46	internal oblique, and TrA of 14 healthy men were measured during abdominal hollowing and the following nine
47	sitting tasks: reference posture, 15° and maximal posterior trunk lean, 20° and maximal ipsilateral and contralateral
48	trunk lean, and ipsilateral and contralateral foot lift. The TrA contribution rate was calculated by dividing the TrA
49	stiffness by the sum of the abdominal muscles' stiffnesses.
50	<i>Results</i> : The TrA stiffness was significantly higher in abdominal hollowing than in reference posture, posterior and
51	ipsilateral trunk lean, and ipsilateral foot lift, but not higher than in contralateral trunk lean and contralateral foot
52	lift. There was no significant difference in the TrA contribution rates between abdominal hollowing and ipsilateral
53	or contralateral foot lift.
54	Conclusion: The contralateral trunk lean or contralateral foot lift could enhance TrA activity for people who cannot
55	perform abdominal hollowing consciously. The contralateral foot lift could particularly be beneficial to obtain
56	selective activity of TrA.

58 Keywords

59	abdominal hollowing, mus	cle stiffness, transversus	abdominis, internal oblic	jue, external oblique	, rectus abdominis
----	--------------------------	----------------------------	---------------------------	-----------------------	--------------------

60

61 Abbreviations

- 62 TrA Transversus abdominis muscle
- 63 ANOVA Analysis of variance
- 64 SWE Shear wave elastography
- 65

67 Introduction

68	The transversus abdominis muscle (TrA) plays an important role in trunk stabilization while moving the
69	extremities (Hodges and Richardson 1996, 1998; Hodges et al. 1997; Okubo et al. 2013). Since the TrA acts to
70	tighten the abdomen even when the activities of the other abdominal muscles remain unchanged, greater TrA
71	activity may allow for a more effective increase in intra-abdominal pressure, which increases the stiffness of the
72	lumbar spine (Hodges et al. 2005). Therefore, improving TrA contribution rate, which is the percentage of TrA
73	activity in all the abdominal muscle activities, is required to increase spinal stiffness and reduce spinal loading
74	(Aspden 1988).
75	Abdominal hollowing exercise, which retracts the abdomen consciously, has been commonly used to train the
76	TrA (Beith et al. 2001; Koh et al. 2014). Isolated TrA activation using very low-intensity abdominal hollowing
77	may be effective to promote muscle recruitment such as improving the delay in neuromuscular activity of TrA
78	(Tsao and Hodges 2007). On the other hand, a previous study found that as the intensity of abdominal hollowing
79	increased, the TrA activity increased significantly and the ratio of the TrA to the internal oblique, external oblique,
80	and rectus abdominis did not change (Shimizu et al. 2019). That is, abdominal hollowing at a higher intensity may
81	more effectively improve the function of the TrA that stabilizes the trunk.
82	Greater decrease in the abdominal cavity during abdominal hollowing reflects stronger contraction of the TrA
83	(Richardson et al. 2004). Hides et al. (2008) reported that there was no significant difference in the TrA thickness
84	and abdominal cavity at rest between those with and without low back pain, and the abdominal cavity during
85	abdominal hollowing was significantly larger in those with low back pain than those without. Therefore, patients

86	with low back pain may have difficulty exerting voluntary TrA contraction even in the absence of atrophy. Hence,
87	training methods targeting involuntary activation of TrA are important for patients with low back pain.
88	The prone bridge exercise activates abdominal muscles involuntarily by resisting the gravity from the posture
89	change (Okubo et al. 2010; Shiju Majeed et al. 2019). However, methods promoting abdominal muscle activity
90	through dynamic posture changes, such as prone bridge, have high physical loads and are not necessarily safe for
91	patients with low back pain (Ekstrom et al. 2008; Bhadauria and Gurudut 2017). Though some studies have
92	reported the relation between abdominal muscle activity and sagittal spinal alignment in sitting (O'Sullivan et al.
93	2002; Astfalck et al. 2010; Claus et al. 2018), these studies did not focus on exercises. However, considering these
94	studies, the TrA activity may be involuntarily increased by leaning the trunk or lifting the foot during sitting, even
95	in patients with low back pain and elderly people with difficulty in changing posture dynamically with high
96	intensity. Foot lift exercises are not changed trunk posture, but may increase abdominal muscle activity to increase
97	lumbar and pelvic stiffness, in order to stabilize the pelvis and to exert hip flexion torque effectively. Revealing
98	how the abdominal muscles activate when leaning the trunk and lifting the foot during sitting may provide
99	knowledge for rehabilitation to stabilize trunks in patients with low back pain and elderly people.
100	The purpose of this study was to verify the effect of trunk lean and foot lift exercises during sitting on abdominal
101	muscle activity and TrA contribution rate. The hypothesis was that the activity of all abdominal muscles will be
102	highest in the posterior trunk lean because the spine is more unstable in flexion and extension than in lateral flexion
103	(Yamamoto et al. 1989). It was also hypothesized that TrA contribution rate would be highest in the contralateral
104	trunk lean where rectus abdominis activity may be more decreased among the abdominal muscles, according to

105	previous studies (Masani et al. 2009; Eriksson Crommert et al. 2017).
106	
107	Methods
108	Participants
109	A total of 14 healthy men (age, 24.6 ± 2.9 years; height, 172.5 ± 6.1 cm; mass, 66.9 ± 9.0 kg) volunteered for this
110	study. The exclusion criteria were a history of low back pain lasting more than three months(Chou et al. 2007),
111	operation and neurological or orthopedic diseases in the trunk or lower limbs. A power analysis with an α error =
112	0.05, power = 0.80, and effect size $f = 0.25$ (medium) was performed by the G*Power 3.1 analysis software
113	(Heinrich Hein University, Duesseldorf, Germany) for one-way repeated measures analysis of variance (ANOVA).
114	This produced a minimum total sample size of 12. This study was approved by the ethics committee of Kyoto
115	University Graduate School and the Faculty of Medicine (R0546-2) and was conducted in compliance with the
116	Declaration of Helsinki. All participants were provided written informed consent after being briefed with the
117	objectives and the risks involved in the experiment.
118	
119	Experimental protocol
120	To minimize the differences in muscle activity due to different spinal alignments in each participant's natural sitting
121	position, a reference posture was defined (Fig 1. a). This is the upright sitting posture, whereby the axis from ear
122	lobe to the floor lies between the anterior and posterior superior iliac spine on the sagittal plane. Further visual
123	verification was done by two of our physiotherapists to ensure no remarkable spinal curvature (e.g. thoracic or

124	lumbar hyperflexion). Participants randomly performed tasks maintaining the following postures (Fig 1. b-f):
125	leaning the trunk posterior to 15° and maximum from reference posture (posterior trunk lean), leaning the trunk at
126	20° and maximum to ipsilateral and contralateral from reference posture (ipsilateral and contralateral trunk lean),
127	and lifting the ipsilateral and contralateral foot about 1 cm from the floor (ipsilateral and contralateral foot lift).
128	Participants received feedback from a mirror placed 1.5-m in front of them, and were instructed to perform tasks
129	without trunk flexion/extension, lateral flexion, or rotation. The measurements were conducted while one examiner
130	confirmed there was no obvious deviation of posture during the tasks. Then the participants performed abdominal
131	hollowing with maximal effort in supine position without moving the trunk and pelvis (Fig 1. g). Lumbar lordosis
132	during abdominal hollowing was confirmed by participants using the Stabilizer Pressure Biofeedback unit (PBU,
133	Chattanooga Group, Australia) placed under the lumbar spine, with a constant pressure of 40 mmHg. This was
134	done to standardize pelvic inclination among participants during the maneuver. They were instructed to perform
135	abdominal hollowing while trying to maintain the pressure at 40 mmHg.
136	
137	Shear wave elastography
138	In each task, muscle stiffnesses of the right TrA, internal oblique, external oblique, and rectus abdominis were
139	measured three times. The measurement sites were determined based on previous studies (Shimizu et al. 2019):
140	TrA and internal oblique muscles, 2-cm medial the anterior superior iliac spine; external oblique, 2.5-cm medial
141	from the point on the axillary line at navel height; and rectus abdominis, 4-cm lateral the navel (Fig 2). Muscle
142	stiffness was calculated using the following formula by shear wave elastography (SWE) mode (musculoskeletal

143 preset) of the Aixplorer ultrasound scanner (v6.4; Supersonic Imagine, Aix-en-Provence, France):

144
$$\mu$$
 (kPa) = $\rho V s^2$

145where ρ = muscle tissue density (1,000 kg/m³), and Vs = propagation velocity of the shear wave generated by the 146ultrasonic transducer. An ultrasonic probe (SL15-4 transducer) was in parallel to the fiber orientation of the target 147muscle. Muscle stiffness was calculated in a 3-mm diameter Q-box at the center of the region of interest placed at 148the center of each muscle (Fig 2). Reports state that muscle stiffness increases with muscle activity (Bouillard et 149al. 2011), and there is high reliability of abdominal muscle stiffness measured using SWE (MacDonald et al. 2016; 150Shimizu et al. 2019). Muscle stiffness was calculated as an average of three measurements for each muscle. After 151calculating intra-rater reliability (ICC1,3) of these three measurements per task, the reliability of each muscle 152stiffness was "almost perfect": TrA, 0.93-1.00; internal oblique, 0.98-1.00; external oblique, 0.98-0.99; and rectus 153abdominis, 0.93-1.00. The TrA contribution rate was calculated by dividing TrA stiffness by the sum of the 154stiffnesses of all four abdominal muscles. 155

156 Spinal and pelvic alignment

Another examiner who did not operate the ultrasonic equipment carefully checked visually to ensure no obvious trunk motion during the task. To verify the degree of spinal flexion and extension, sagittal spinal alignment was measured twice using the Spinal Mouse (Index Ltd., Tokyo, Japan) before every measurement for muscle stiffness. The intra-rater reliabilities (ICC_{1,1}) were then calculated. In 12 participants, excluding 2 with data loss, ICC_{1,1} of spinal alignment data (i.e., the sum of segmental angles from Th1/2 to L5/S) (Tateuchi et al. 2018) ranged from

162	0.73 to 0.88. The average angles of thoracic kyphosis and lumbar lordosis were calculated from these data. The
163	average angle of pelvic posterior inclination at the height of the second sacrum measured three times using an
164	inclinometer (Wixey, USA) was calculated, and intra-rater reliability (ICC _{1,1}) ranged from 0.89 to 0.98. The
165	average angle of the maximum spine inclination to posterior and right/left measured three times using a goniometer
166	was calculated.
167	
168	Statistical analysis
169	Statistical analysis was performed using SPSS version 22.0 (SPSS Japan Inc., Tokyo, Japan). The one-way
170	repeated-measures ANOVA analysis was used to compare the paired datasets between tasks and to investigate
171	whether specific abdominal muscle stiffness or TrA contribution rates would differ depending on the task. When
172	a significant difference was observed, multiple comparisons corrected by the Holm method were performed as a
173	post-hoc test. Dunnet's test was performed to compare the thoracic kyphosis, lumbar lordosis, and pelvic
174	inclination angles between reference posture and other sitting tasks. Additionally, in order to examine the variation
175	among participants, the Pearson correlation analysis was conducted to determine the relationship between TrA
176	contribution rates in each task and the stiffness of the internal oblique, external oblique, and rectus abdominis in
177	the reference posture. A P value <0.05 was considered statistically significant.
178	
179	Results

180 The muscle stiffness for each muscle in the various tasks is shown in Table 1. All muscle stiffnesses showed

181	significant main effects of tasks in one-way repeated measures ANOVA. TrA stiffness was significantly higher in
182	abdominal hollowing than in all other tasks, except for contralateral trunk lean (at 20° and maximum) and foot lift.
183	TrA stiffness in the maximum contralateral trunk lean was significantly higher than that in the reference posture,
184	posterior trunk lean (at 15° and maximum), and ipsilateral foot lift. The stiffness of the internal oblique was
185	significantly higher in abdominal hollowing than in all other tasks, except for contralateral trunk lean (at 20° and
186	maximum), and was significantly higher in the maximum contralateral trunk lean than in reference posture,
187	posterior trunk lean (at 15° and maximum), ipsilateral trunk lean (at 20° and maximum), and ipsilateral foot lift.
188	The stiffness of the external oblique was significantly higher in the posterior trunk (at 15° and maximum) and
189	contralateral trunk leans (at 20° and maximum) than in all other tasks, but there were no significant differences
190	among the four tasks of the posterior trunk (at 15° and maximum) and contralateral trunk leans (at 20° and
191	maximum). The stiffness of rectus abdominis was significantly higher in the posterior trunk lean at maximum than
192	in all other tasks.
193	The TrA contribution rates in the various tasks is shown in Table 1. There was a significant main effect of task
194	in one-way repeated measures ANOVA. The TrA contribution rate in abdominal hollowing was significantly higher
195	than that in the posterior trunk lean (at 15° and maximum), ipsilateral trunk lean at maximum, and contralateral
196	trunk lean (at 20° and maximum). There was no significant difference in TrA contribution rate between abdominal
197	hollowing and reference posture, ipsilateral trunk lean at 20°, and ipsilateral and contralateral foot lift.
198	The results of thoracic kyphosis angle, lumbar lordosis angle, pelvic inclination angle, and maximum spinal
199	inclination angle are shown in Table 2. The thoracic kyphosis and lumbar lordosis angles were not significantly

200

different between reference posture and other sitting tasks. The pelvic posterior inclination angle was significantly

201	higher in the posterior trunk lean than in reference posture.
202	The additional Pearson correlation analysis showed that the TrA contribution rate in those with high external
203	oblique stiffness in the reference posture tended to be low in the ipsilateral foot lift ($r = -0.742$, $p = 0.002$) and high
204	during maximum abdominal hollowing (r = 0.519 , p = 0.057).
205	
206	Discussion
207	The present study was the first, to our knowledge, to investigate noninvasively the effects of trunk lean and foot
208	lift exercises during sitting on abdominal muscle activity. High TrA activity was exerted in the contralateral trunk
209	lean and contralateral foot lift during sitting, and the TrA contribution rate in the contralateral foot lift was a similar
210	level to that in maximum abdominal hollowing. These exercises can be performed in elderly people and patients
211	with low back pain, who have difficulty with consciously contracting abdominal muscles such as abdominal
212	hollowing. Our results have elucidated the specific exercises which maximize the activation of TrA and improve
213	TrA contribution rate. Therefore, these may be useful in the consideration of targeted TrA exercises to stabilize the
214	trunk of elderly people and patients with low back pain.
215	Although the TrA activity was highest in abdominal hollowing, TrA activity in the contralateral trunk lean during
216	sitting showed no significant difference to that in abdominal hollowing and tended to be higher than that in
217	reference posture, posterior trunk lean, and ipsilateral foot lift. These results differed from our hypothesis that
218	higher TrA activity will be exerted in the posterior trunk lean because the spine is more unstable in flexion and

219	extension than in lateral flexion (Yamamoto et al. 1989). The TrA may have an important role holding the trunk
220	and maintaining the posture predictively while other muscles contract (Hodges and Richardson 1997; Allison et
221	al. 2008). On the other hand, previous study showed using wire electromyography that the activity of the TrA and
222	internal oblique increased when pulled to contralateral sides, while the activity of the external oblique and rectus
223	abdominis increased when pulled posteriorly (Eriksson Crommert et al. 2017). This study supports our results.
224	Therefore, the present study indicates that all abdominal muscles, even the TrA working to stabilize the trunk, may
225	be specifically activated in postures with external moments in the opposite direction to their anatomical
226	orientations. Moreover, the neutral zone, which is the range of inter-vertebral motion whereby spinal stiffness (i.e.
227	the force required to make a constant displacement between the vertebrae) is the lowest (Panjabi 1992), has been
228	reported to increase with ligament damage and disc degeneration (Panjabi et al. 1989; Hasegawa et al. 2008).
229	Busscher et al. (2009) indicated that the lumbar vertebrae had less spinal stiffness in lateral bending in a wider
230	range of motion than the lower thoracic vertebrae and might have less resistance of passive tissue such as ligaments.
231	Therefore, TrA activity is more likely to increase in lateral trunk lean than posterior trunk lean due to its anatomical
232	function. The present study supports the role of TrA in increasing spinal stiffness. However, because this study did
233	not verify the load on the spine during the task, further studies should determine whether direction-specific activity
234	of the TrA reflects direction-specific properties of the spine.
235	The TrA contribution rate was significantly higher in the foot lift than in the posterior or the contralateral trunk
236	lean, which differed from our hypothesis. This may be because the stiffness of the lumbar spine and pelvis
237	increased with TrA activity (Tesh et al. 1987), making it easier to exert muscle strength of the hip flexors during

238	foot lift. The reason why the activity of the rectus abdominis and oblique abdominal muscles, which are the global
239	muscles (Bergmark 1989), did not increase much may be because the trunk load from gravity was lower in foot
240	lift than in contralateral trunk lean. Therefore, the increase in TrA contribution rate in foot lift may be attributed to
241	these circumstances. On the other hand, the low TrA contribution rate during contralateral trunk lean may be due
242	to the requirement to stabilize not only the lumbopelvic region but also the entire spinal alignment against gravity,
243	rendering isolated TrA activity insufficient. In other words, the rectus abdominis, external oblique and internal
244	oblique muscles may have been activated to stabilize the thorax.
245	TrA acts to tighten the abdomen. It is, however, a thin muscle, therefore is independently not adequate to
246	contribute to spinal stiffness. It is hence suggestive that TrA plays a supportive role in helping the activities of
247	other abdominal muscles. Therefore, high TrA contribution rate (i.e. higher TrA activity when those of other
248	abdominal muscles remain unchanged) may be important in allowing for more effective increase of intra-
249	abdominal pressure, which leads to the increase of spinal stiffness (Hodges et al. 2005; Hides et al. 2006). However,
250	a recent Cochrane review about nonspecific low back pain reported that there were no differences in the effect on
251	improving disability due to low back pain between the specific training for TrA and multifidus muscles and general
252	trunk exercises such as stretching and resistance training (Saragiotto et al. 2016). This is believed to be due to
253	diversity of potential causes of nonspecific back pain (Kiesel et al. 2007). Thus, specific training of the TrA may
254	not necessarily be important for all low back pain patients. In the present study, the variation in the degrees of
255	abdominal muscle stiffness among participants may have affected our results. The additional Pearson correlation
256	analysis have verified the relationship between the TrA contribution rates in each task and the stiffness of the

257	internal oblique, external oblique and rectus abdominis muscles in the reference posture. The results showed that
258	TrA contribution rate in those with high stiffness of external obliques in the reference posture tended to be low
259	during ipsilateral foot lifting (r = -0.742) and high during maximum abdominal hollowing (r = 0.519). This suggest
260	that the particular exercises required to improve TrA contribution rate may differ according to the properties of
261	abdominal muscles during the sitting position. Further study should better understand which subgroups of patients
262	with low back pain require exercise with a high TrA contribution rate (Hill et al. 2008; Macedo et al. 2014).
263	In this study, characteristics of abdominal muscles were investigated using SWE. Since measurement values of
264	muscle stiffness in this study were similar to those in a previous SWE study (Shimizu et al. 2019), verification of
265	abdominal muscle activities using abdominal muscles' stiffnesses is considered appropriate. Neuromuscular
266	activity measured by a surface or wire electromyography and muscle thickness by an ultrasonic device have been
267	commonly used to verify abdominal muscle activity. However, abdominal muscle thickness changes during
268	contraction may not necessarily be proportional to increases in abdominal muscle activities (Hodges et al. 2003;
269	Whittaker et al. 2013). In addition, surface electromyography cannot measure the TrA, a deep muscle, and wire
270	electromyography is invasive. The SWE in the present study can measure a deep muscle noninvasively and may
271	be useful for verifying abdominal muscle (especially TrA) activity.
272	This study had some limitations. First, spinal lateral flexion and rotation could not be evaluated objectively.
273	Since spinal motion greatly influences abdominal muscle activity because of abdominal muscle anatomy, the
274	experiment paid attention to spinal motion. To avoid fatigue due to an increase in the number of tasks measured,
275	only spinal mobilities in flexion and extension were measured by the Spinal Mouse. However, there were no

276	significant differences in thoracic kyphosis, lumbar lordosis, and pelvic inclination angles between tasks; thus,
277	evident spinal motion probably did not occur in this study. The second limitation was that only men participated
278	in the present study. The mobilities of and load on the sacroiliac joint are reported to be greater in women than in
279	men (Joukar et al. 2018); therefore, since lower fibers of the TrA increase the stiffness of the sacroiliac joint, results
280	may differ in a female study population. Third, the tasks used in present study were not exercises whereby TrA
281	was activated in isolation. Lastly, they may not be appropriate for all patients with low back pain.
282	
283	Conclusion
283 284	Conclusion This study investigated noninvasively the effects of trunk lean and foot lift exercises during sitting on abdominal
284	This study investigated noninvasively the effects of trunk lean and foot lift exercises during sitting on abdominal
284 285	This study investigated noninvasively the effects of trunk lean and foot lift exercises during sitting on abdominal muscle activity. Higher TrA activity was exerted by leaning the trunk to the contralateral side and lifting the
284 285 286	This study investigated noninvasively the effects of trunk lean and foot lift exercises during sitting on abdominal muscle activity. Higher TrA activity was exerted by leaning the trunk to the contralateral side and lifting the contralateral foot. Furthermore, TrA contribution rate in the contralateral foot lift was similar to that in maximum

290 Compliance with Ethical Standards

291 Disclosure of potential conflicts of interest

292 Conflict of Interest: The authors declare that they have no conflict of interest.

293

294 Research involving Human Participants and/or Animals

- 295 Ethics approval: All the procedures performed in the studies involving human participants were in accordance with
- the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration
- and its later amendments or comparable ethical standards. This study was approved by the ethics committee of
- 298 Kyoto University Graduate School and the Faculty of Medicine (R0546-2)
- 299

300 Informed consent

301 Informed consent was obtained from all individual participants involved in the study.

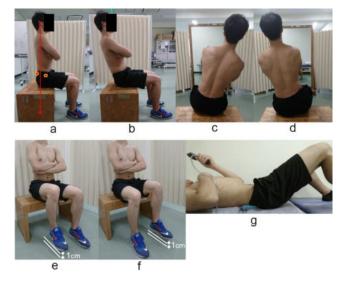
303 References

304	Allison GT, Morris SL, Lay B	(2008) Feedforward	Responses of Transversus	Abdominis Are Directionally
-----	------------------------------	--------------------	--------------------------	-----------------------------

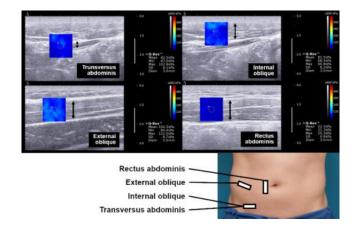
- 305 Specific and Act Asymmetrically: Implications for Core Stability Theories. J Orthop Sport Phys Ther
- 306 38:228–237. doi: 10.2519/jospt.2008.2703
- 307 Aspden RM (1988) A new mathematical model of the spine and its relationship to spinal loading in the
- 308 workplace. 319–323.
- 309 Astfalck RG, O'Sullivan PB, Straker LM, et al (2010) Sitting postures and trunk muscle activity in adolescents
- 310 with and without nonspecific chronic low back pain: an analysis based on subclassification. Spine (Phila
- 311 Pa 1976) 35:1387–1395. doi: 10.1097/BRS.0b013e3181bd3ea6
- 312 Beith ID, Synnott RE, Newman SA (2001) Abdominal muscle activity during the abdominal hollowing
- 313 manoeuvre in the four point kneeling and prone positions. Man Ther 6:82–87. doi:
- 314 10.1054/math.2000.0376
- Bergmark A (1989) Stability of the lumbar spine: A study in mechanical engineering. Acta Orthop 60:1–54. doi:
- 316 10.3109/17453678909154177
- 317 Bhadauria EA, Gurudut P (2017) Comparative effectiveness of lumbar stabilization, dynamic strengthening, and
- 318 Pilates on chronic low back pain: randomized clinical trial. J Exerc Rehabil 13:477–485. doi:
- 319 10.12965/jer.1734972.486
- 320 Bouillard K, Nordez A, Hug F (2011) Estimation of individual muscle force using elastography. PLoS One. doi:
- 321 10.1371/journal.pone.0029261

322	Busscher I, Van Dieën JH, Kingma I, et al (2009) Biomechanical characteristics of different regions of the
323	human spine: An in vitro study on multilevel spinal segments. Spine (Phila Pa 1976) 34:2858–2864. doi:
324	10.1097/BRS.0b013e3181b4c75d
325	Chou R, Snow V, Casey D, et al (2007) Clinical Guidelines Diagnosis and Treatment of Low Back Pain : A Joint
326	Clinical Practice Guideline from the American College of Physicians and the American. Ann Intern Med
327	147:478–491.
328	Claus AP, Hides JA, Moseley GL, Hodges PW (2018) Different ways to balance the spine in sitting: Muscle
329	activity in specific postures differs between individuals with and without a history of back pain in sitting.
330	Clin Biomech 52:25–32. doi: 10.1016/j.clinbiomech.2018.01.003
331	Ekstrom RA, Osborn RW, Hauer PL (2008) Surface Electromyographic Analysis of the Low Back Muscles
332	During Rehabilitation Exercises. J Orthop Sport Phys Ther 38:736–745. doi: 10.2519/jospt.2008.2865
333	Eriksson Crommert M, Tucker K, Holford C, et al (2017) Directional preference of activation of abdominal and
334	paraspinal muscles during position-control tasks in sitting. J Electromyogr Kinesiol 35:9–16. doi:
335	10.1016/j.jelekin.2017.05.002
336	Hasegawa K, Kitahara K, Hara T, et al (2008) Evaluation of lumbar segmental instability in degenerative
337	diseases by using a new intraoperative measurement system. J Neurosurg Spine 8:255–262. doi:
338	10.3171/spi/2008/8/3/255
339	Hides J, Stanton W, Freke M, et al (2008) MRI study of the size, symmetry and function of the trunk muscles
340	among elite cricketers with and without low back pain. Br J Sports Med 42:509-513. doi:

- 341 10.1136/bjsm.2007.044024
- 342 Hides J, Wilson S, Stanton W, et al (2006) An MRI investigation into the function of the transversus abdominis
- 343 muscle during "drawing-in" of the abdominal wall. Spine (Phila Pa 1976) 31:175–178. doi:
- 344 10.1097/01.brs.0000202740.86338.df
- Hill JC, Dunn KM, Lewis M, et al (2008) A primary care back pain screening tool: Identifying patient subgroups
- 346 for initial treatment. Arthritis Care Res 59:632–641. doi: 10.1002/art.23563
- 347 Hodges PW, Eriksson AEM, Shirley D, Gandevia SC (2005) Intra-abdominal pressure increases stiffness of the
- 348 lumbar spine. 38:1873–1880. doi: 10.1016/j.jbiomech.2004.08.016
- 349 Hodges PW, Gandevia SC, Richardson CA (1997) Contractions of specific abdominal muscles in postural tasks
- are affected by respiratory maneuvers. J Appl Physiol 83:753–760.
- 351 Hodges PW, Pengel LHM, Herbert RD, Gandevia SC (2003) Measurement of muscle contraction with
- 352 ultrasound imaging. Muscle and Nerve 27:682–692. doi: 10.1002/mus.10375
- 353 Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low
- back pain. A motor control evaluation of transversus abdominis. Spine (Phila. Pa. 1976). 21:2640–50.
- 355 Hodges PW, Richardson CA (1997) Contraction of the abdominal muscles associated with movement of the
- lower limb. Phys Ther 77:132–142; discussion 142-144.
- 357 Hodges PW, Richardson CA (1998) Delayed postural contraction of transversus abdominis in low back pain
- associated with movement of the lower limb. J Spinal Disord 11:46–56. doi: 9493770
- 359 Joukar A, Shah A, Kiapour A, et al (2018) Sex Specific Sacroiliac Joint Biomechanics During Standing Upright:


360	A Finite Element Study. Spine (Phila Pa 1976) 43:E1053-E1060. doi: 10.1097/BRS.00000000002623
361	Kiesel KB, Underwood FB, Mattacola CG, et al (2007) A Comparison of Select Trunk Muscle Thickness
362	Change Between Subjects With Low Back Pain Classified in the Treatment-Based Classification System
363	and Asymptomatic Controls. J Orthop Sport Phys Ther 37:596-607. doi: 10.2519/jospt.2007.2574
364	Koh HW, Cho SH, Kim CY (2014) Comparison of the Effects of Hollowing and Bracing Exercises on Cross-
365	sectional Areas of Abdominal Muscles in Middle-aged Women. J Phys Ther Sci 26:295–299. doi:
366	10.1589/jpts.26.295
367	MacDonald D, Wan A, McPhee M, et al (2016) Reliability of Abdominal Muscle Stiffness Measured Using
368	Elastography during Trunk Rehabilitation Exercises. Ultrasound Med Biol 42:1018–1025. doi:
369	10.1016/j.ultrasmedbio.2015.12.002
370	Macedo LG, Maher CG, Hancock MJ, et al (2014) Predicting Response to Motor Control Exercises and Graded
371	Activity for Patients With Low Back Pain: Preplanned Secondary Analysis of a Randomized Controlled
372	Trial. Phys Ther 94:1543–1554. doi: 10.2522/ptj.20140014
373	Masani K, Sin VW, Vette AH, et al (2009) Postural reactions of the trunk muscles to multi-directional
374	perturbations in sitting. Clin Biomech 24:176-182. doi: 10.1016/j.clinbiomech.2008.12.001
375	O'Sullivan PB, Grahamslaw KM, Kendell M, et al (2002) The Effect of Different Standing and Sitting Postures
376	on Trunk Muscle Activity in a Pain-Free Population. Spine (Phila Pa 1976) 27:1238–1244. doi:
377	10.1097/00007632-200206010-00019
378	Okubo Y, Kaneoka K, Imai A, et al (2010) Electromyographic analysis of transversus abdominis and lumbar

- 379 multifidus using wire electrodes during lumbar stabilization exercises. J Orthop Sport Phys Ther 40:743–
- 380 750. doi: 10.2519/jospt.2010.3192
- 381 Okubo Y, Kaneoka K, Shiina I, et al (2013) Abdominal Muscle Activity During a Standing Long Jump. J Orthop
- 382 Sport Phys Ther 43:577–582. doi: 10.2519/jospt.2013.4420
- 383 Panjabi M, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces. A
- biomechanical model. Spine (Phila. Pa. 1976). 14:194–200.
- 385 Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal
- 386 Disord. 5:390–396; discussion 397.
- 387 Richardson CA, Hides JA, Wilson S, et al (2004) Lumbo-pelvic joint protection against antigravity forces: motor
- 388 control and segmental stiffness assessed with magnetic resonance imaging. J Gravit Physiol 11:119–122.
- 389 Saragiotto BT, Maher ÃCG, Tie à (2016) Motor Control Exercise for Nonspecific Low Back Pain. Spine (Phila
- 390 Pa 1976) 41:1284–1295. doi: 10.1002/14651858.CD012004.
- 391 Shiju Majeed A, Anish TS, Sugunan A, Arun MS (2019) The effectiveness of a simplified core stabilization
- 392 program (TRICCS—Trivandrum Community-based Core Stabilisation) for community-based intervention
- in chronic non-specific low back pain. J Orthop Surg Res 14:86. doi: 10.1186/s13018-019-1131-z
- 394 Shimizu I, Tateuchi H, Motomura Y, et al (2019) Abdominal girth as an index of muscle tension during
- 395 abdominal hollowing: Selecting the optimal training intensity for the transversus abdominis muscle. J
- Biomech. doi: 10.1016/j.jbiomech.2019.04.018
- 397 Tateuchi H, Akiyama H, Goto K, et al (2018) Sagittal alignment and mobility of the thoracolumbar spine are


398	associated with radiographic progression of secondary hip osteoarthritis. Osteoarthr Cartil 26:397-404.
399	doi: 10.1016/j.joca.2017.12.005
400	Tesh KM, Dunn JS, Evans JH (1987) The abdominal muscles and vertebral stability. Spine (Phila Pa 1976)
401	12:501–508.
402	Tsao H, Hodges PW (2007) Immediate changes in feedforward postural adjustments following voluntary motor
403	training. Exp Brain Res 181:537–546. doi: 10.1007/s00221-007-0950-z
404	Whittaker JL, McLean L, Hodder J, et al (2013) Association Between Changes in Electromyographic Signal
405	Amplitude and Abdominal Muscle Thickness in Individuals With and Without Lumbopelvic Pain. J
406	Orthop Sport Phys Ther 43:466–477. doi: 10.2519/jospt.2013.4440
407	Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine
408	and lumbosacral joint. Spine (Phila Pa 1976) 14:1256-60. doi: 10.1097/00007632-198911000-00020
409	
410	
411	
412	

413

- 414 **Fig. 1** Task postures. a reference posture; b posterior trunk lean; c ipsilateral trunk lean; d contralateral trunk lean;
- 415 e ipsilateral foot lift; f contralateral foot lift; g abdominal hollowing with maximal effort. The reference posture
- 416 was defined as a natural posture for each participant where the perpendicular line from ear hole to the floor was
- 417 between the anterior and posterior superior iliac spine on the sagittal plane

418

- 419
- 420 Fig. 2 Representative images and measurement sites of the stiffness of abdominal muscles

421

422

	Transversus abdominis [kPa]	Internal oblique [kPa]	External oblique [kPa]	Rectus abdominis [kPa]	Contribution rate of transversus abdominis [%]
	2,3,4,5,6,9	2,3,4,5,6,9,10		2	3,4,6,7,8
Abdominal hollowing with maximal effort (1)	39.5 ± 18.0	48.2 ± 20.9	12.4 ± 9.3	18.2 ± 8.9	33.8 ± 7.5
Reference posture (2)	11.3 ± 4.7	13.8 ± 7.9	6.8 ± 4.3	7.9 ± 3.2	$\begin{array}{c} 3{,}4\\ 28{.}7\pm8{.}4\end{array}$
			1,2,5,6,9,10	2,7,9	
Posterior trunk lean at 15° (3)	12.3 ± 10.7	11.3 ± 10.1	36.3 ± 14.1	36.1 ± 19.0	12.0 ± 7.7
			1,2,5,6,9,10	1,2,3,5,6,7,8,9,10	
Posterior trunk lean at max (4)	9.3 ± 4.3	10.7 ± 4.8	66.4 ± 21.1	70.6 ± 22.0	6.1 ± 2.8
					4
Ipsilateral trunk lean at 20° (5)	13.3 ± 6.4	14.3 ± 6.0	8.0 ± 4.9	18.0 ± 17.7	25.9 ± 8.9
		3,4		2	3,4
Ipsilateral trunk lean at max (6)	18.8 ± 9.4	20.5 ± 10.1	12.8 ± 6.9	20.1 ± 10.2	25.8 ± 7.0
	2,4	3,4,5,9	1,2,5,6,9,10		4
Contralateral trunk lean at 20° (7)	19.6 ± 8.1	26.5 ± 10.6	42.1 ± 10.3	13.7 ± 6.2	19.5 ± 7.7
	2,3,4,9	2,3,4,5,6,9	1,2,5,6,9,10		4
Contralateral trunk lean at max (8)	26.1 ± 11.5	36.1 ± 15.3	55.4 ± 19.0	27.7 ± 18.4	18.3 ± 7.0
					3,4,8
Ipsilateral foot lift (9)	14.0 ± 4.6	15.4 ± 6.4	9.6 ± 7.0	9.2 ± 5.7	29.3 ± 7.7
	2,4	2,4			3,4,7,8
Contralateral foot lift (10)	18.0 ± 7.8	20.7 ± 7.7	7.1 ± 7.1	13.6 ± 11.4	31.2 ± 8.8

424 **Table 1** The stiffnesses of abdominal muscles and the contribution rate of transversus abdominis during tasks

425 Values are expressed as mean \pm standard deviation

426 $^{1-10} P < 0.05$ vs. the task, which is corresponded to numbers

427 **Table 2** Spinal alignment during each task

	Thoracic kyphosis [°] (n=12)	Lumbar lordosis [°] (n=12)	Pelvic inclination [°] (n=14)	Spinal inclination [°] (n=14)
Reference posture	29.1 ± 6.0	2.8 ± 7.3	1.0 ± 9.1	
Posterior trunk lean at 15°	31.0 ± 6.1	4.0 ± 9.6	11.9 ± 8.8 *	
Posterior trunk lean at max	32.0 ± 6.4	5.8 ± 8.0	24.8 ± 11.5 *	28.7 ± 5.2
Ipsilateral trunk lean at 20°	34.0 ± 8.2	10.9 ± 10.8	-1.5 ± 9.6	
Ipsilateral trunk lean at max	29.6 ± 6.8	8.2 ± 6.4	-1.8 ± 8.9	28.5 ± 3.8
Contralateral trunk lean at 20°	31.2 ± 6.4	8.7 ± 7.6	-1.4 ± 9.5	
Contralateral trunk lean at max	31.1 ± 6.8	6.8 ± 6.9	-4.2 ± 8.7	29.4 ± 4.6
Ipsilateral foot lift	28.2 ± 5.9	7.9 ± 8.4	1.7 ± 10.1	
Contralateral foot lift	26.8 ± 6.0	7.1 ± 6.5	0.2 ± 9.9	

428 Values are expressed as mean \pm standard deviation

429 The positive values in pelvic inclination represent the sacral posterior inclination angle on the sagittal plane

430 * P < 0.05 vs. reference posture