

Effective stretching position of the coracobrachialis muscle

AUTHOR(S):

Kobayashi, Kotono; Umehara, Jun; Nakao, Sayaka; Ichihashi, Noriaki

CITATION:

Kobayashi, Kotono ...[et al]. Effective stretching position of the coracobrachialis muscle. Journal of Biomechanics 2021, 120: 110390.

ISSUE DATE: 2021-05

URL: http://hdl.handle.net/2433/268029

RIGHT:

© 2021. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.; The full-text file will be made open to the public on 7 May 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。

1	Effective stretching position of the coracobrachialis muscle
2	Type of Article: Original Article
3	
4	Kotono KOBAYASHI ^{1*} , Jun UMEHARA ^{1,2,3} , Sayaka NAKAO ¹ , Noriaki ICHIHASHI ¹
5	
6	1 Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
7	2 Center for Information and Neural Networks (CiNet), National Institute of Information and
8	Communications Technology, Suita, Japan
9	3 Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Japan
10	
11	*Corresponding author
12	Kotono KOBAYASHI
13	Department of Physical Therapy, Human Health Sciences,
14	Graduate School of Medicine, Kyoto University
15	53, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
16	Phone: +81-75-751-3951
17	Fax: +81-75-751-3951
18	E-mail: kobayashi.kotono.75x@st.kyoto-u.ac.jp

19

- 20 Keywords: elastography; shear modulus; stretching; coracobrachialis muscle; shoulder
- 21 Word count: 2077

22

23

ABSTRACT (250 words)

24	An increase in the stiffness of the coracobrachialis muscle can restrain proper movement of the
25	glenohumeral joint and scapula during arm elevation. Therefore, muscle stiffness should be reduced
26	through stretching. The aim of this study was to determine the effective stretching position of the
27	coracobrachialis muscle using ultrasound shear wave elastography imaging to evaluate the stiffness of
28	individual muscles. Eighteen healthy young men participated in this study. The shear modulus of the
29	coracobrachialis muscle was measured at the following eight shoulder positions: i) 20° abduction
30	(Rest), ii) maximal external rotation at 90° abduction (ER2), iii) maximal internal rotation at 90°
31	abduction (IR2), iv) maximal flexion (Flex), v) maximal extension (Ext), vi) maximal horizontal
32	abduction at 90° abduction (Hab), vii) maximal horizontal abduction and maximal external rotation at
33	90° abduction (HabER), and viii) maximal horizontal abduction and maximal internal rotation at 90°
34	abduction (HabIR). The shear modulus in each position was compared with that of Rest using the
35	Wilcoxon signed-rank test, and a multiple comparison test was performed among the positions that
36	exhibited significant difference. The shear modulus of all stretching positions was significantly higher
37	than that of Rest, except for Flex. Moreover, the shear moduli of IR2, Ext, Hab, HabER, and HabIR
38	were significantly higher than that of ER2. The shear modulus of Ext was significantly higher than
39	that of HabIR. The coracobrachialis muscle could be stretched effectively at IR2, Ext, Hab, HabER,
40	and HabIR. Among these positions, Ext, Hab, and HabER are recommended for clinical settings.

41 INTRODUCTION

42	The shoulder is the joint in the body with the largest freedom of movement, and it consists of true
43	joints and functional articulations. The true joint consists of the sternoclavicular, acromioclavicular,
44	and glenohumeral joints. The functional articulation consists of the scapulothoracic joint and
45	subacromial space. In the elevation of the upper extremity, it is well known that the glenohumeral joint
46	and scapula, which consist of the compound motion of the sternoclavicular, acromioclavicular, and
47	scapulothoracic joints, move cooperatively (Lee et al., 2020; Ludewig et al., 2009; Matsuki et al.,
48	2011).
49	The coracobrachialis muscle can affect the movements of the glenohumeral joint and scapula
50	and can be a limiting factor in several situations: i) for shoulder extension, as it has a moment arm of
51	shoulder flexion (Schenkman and Rugo de Cartaya, 1987), ii) for horizontal abduction because it has
52	a moment arm of horizontal abduction when the shoulder is at 90° abduction and 90° external rotation
53	(Bassett et al., 1990), iii) for internal rotation because it has a moment arm of external rotation in the
54	shoulder at 90° abduction and 90° external rotation (Bassett et al., 1990). From the morphological
55	features, the coracoid process is pulled inward and downward when the coracobrachialis muscle
56	contracts. Thus, shortening of the coracobrachialis muscle could cause anterior tilt and internal rotation
57	of the scapula. Because upward rotation, posterior tilt, and external rotation of the scapula are
58	necessary for upper limb elevation (Tsai et al., 2003), shortening of the coracobrachialis muscle could

59	be an inhibiting factor for the movement of the scapula. Therefore, reducing the stiffness of the
60	coracobrachialis muscle is important for inducing proper movement of the shoulder.
61	Static stretching has often been used to decrease muscle stiffness; however, no previous
62	reports have mentioned the effective stretching of the coracobrachialis muscle. Range of motion,
63	passive torque, and passive joint stiffness have been conventionally used to assess the effect of
64	stretching (Bandy and Irion, 1994; Boyce and Brosky, 2008; Ryan et al., 2008). Nonetheless, it has
65	been reported that such indicators are not able to evaluate the stiffness of individual muscles because
66	they are multiplex indicators that may be affected by the contralateral synergists, ligaments, and
67	articular capsules that exist across the joint (Maisetti et al., 2012). Besides, the shoulder has a complex
68	anatomical structure. Therefore, conventional stretching indicators cannot determine which position
69	is more effective in stretching the coracobrachialis muscle.
70	Using ultrasound shear wave elastography (SWE), which is one of the features of
71	sonography, we can noninvasively and indirectly evaluate the lengthening of an individual muscle
72	(Koo et al., 2014; Kusano et al., 2017). The SWE measures the propagation velocity of the shear wave
73	generated by the acoustic radiation force from a push pulse and calculates the shear modulus within
74	the region of interest (ROI) (Brandenburg et al., 2014). Previous studies have indicated a high
75	correlation between the shear modulus and the degree of muscle extension (Koo et al., 2013),
76	suggesting that a higher shear modulus indicates that the muscle is more extended. Thus, the shear

77	modulus is considered a useful index for the objective evaluation of the degree of muscle extension
78	by stretching (Umehara et al., 2015).
79	The aim of this study was to determine the effective stretching position of the
80	coracobrachialis muscle using ultrasound SWE imaging. We hypothesized that stretching in extension
81	and horizontal abduction would effectively extend this muscle because of its functions of flexion and
82	horizontal adduction of the shoulder (Bassett et al., 1990; Schenkman and Rugo de Cartaya, 1987).
83	
84	MATERIALS AND METHODS
85	Participants
86	Eighteen men (age = 24.8 ± 4.4 years; height = 171.4 ± 8.2 cm; mass = 66.7 ± 10.4 kg) participated in
87	this study. Participants did not have any orthopedic or nervous system abnormalities in the upper limbs.
88	All participants did not perform specific training and/or stretching exercise, which could influence to
89	the muscle properties. The sample size was calculated using G*Power software (version 3.1; Heinrich
90	Heine University, Dusseldorf, Germany) for a <i>t</i> -test model (effect size = 0.83 ; α error = 0.05 ; power =
91	0.8), which revealed that 14 participants were required. It should be noted that the effect size was
92	calculated from a previous study with a similar empirical procedure (Umehara et al., 2017). Therefore,
93	we recruited 18 participants, considering the absence of data. All participants were fully informed
94	about the procedures and purpose and signed the participation agreement prior to the experiment. This

95	study was approved by the Ethics Committee of Kyoto University Graduate School and Faculty of
96	Medicine (approval number: R0233-7).
97	
98	Measurement positions
99	The shear modulus was measured at rest and in seven possible stretching positions as follows: i) 20°
100	shoulder abduction (Rest), ii) shoulder maximal external rotation at 90° abduction (ER2), iii) shoulder
101	maximal internal rotation at 90° abduction (IR2), iv) shoulder maximal flexion (Flex), v) shoulder
102	maximal extension (Ext), vi) shoulder maximal horizontal abduction at 90° abduction (Hab), vii)
103	maximal shoulder abduction and maximal external rotation at 90° abduction (HabER), and viii)
104	shoulder maximal horizontal abduction and maximal internal rotation at 90° abduction (HabIR). All
105	the positions are shown in Figure 1. The elbow joint was fully extended in the measurement of Rest,
106	Flex, and Ext, and at 90° flexion in the other positions. Before each measurement, we determined the
107	elbow angle using a goniometer, and the investigator hold the position. Participants lay in a supine
108	position on a plinth during the measurements. The shoulder was passively moved to the angle just
109	before the participants felt pain, and then the position was maintained by the investigator during the
110	measurements. Two investigators performed ultrasound measurements and the position setting,
111	respectively. During all measurements, participants were instructed to relax as much as possible, and
112	their shoulder was supported to avoid muscle contraction. Measurements for Rest were conducted first,

followed by the other positions in a random order to avoid the carry-over effect. The computerized random number function in Microsoft Excel (Microsoft Japan Co., Ltd, Japan) was used for randomization.

116

117 Shear wave elastography

118 The shear modulus of the coracobrachialis muscle was measured using ultrasound SWE imaging 119 (Aixplorer version 12.2.0; SuperSonic Imagine, Aix-en Provence, France) with a linear probe (2-10 120 MHz, SuperLiner SL10-2). The measurement modes were custom musculoskeletal preset penetration 121 modes with high persistence, a frequency of 2.0 Hz, a smoothing level of 5, opacity of 100%, and gain 122 of 90%. The coracobrachialis of the non-dominant upper limb was captured to assess the shear 123 modulus. The dominant limb was determined as the limb that is preferred for throwing a ball, which 124 was the right limb in 15 participants and the left limb in 3. As the positional relation between the belly 125 of the coracobrachialis muscle and the probe changed at each position, we identified the muscle belly 126 based on the proximal 20% point of the line connecting the acromion of the scapula and the lateral 127 epicondyle of the humerus before capturing longitudinal images. The measurement location was 128 marked on the skin in the resting position for capturing the images at same the location across the 129 different stretching positions. In addition, on the B-mode image the intramuscular tendon in the 130 coracobrachialis muscle was also confirmed as the maker. The shear modulus measurement was

131	repeated three times at each position, and the average value was used for further analysis.
132	
133	Image analysis
134	For image analysis, the ROI was set to 1×1 cm at the center of the muscle belly. Then, a circle with
135	a diameter of 8 mm was set in the ROI, and the average shear wave propagation velocity in this circle
136	was calculated. A circle with a diameter of 5 mm was used when the measurable muscle belly was
137	thinner than 8 mm or when there was an obvious artifact owing to an intramuscular tendon or fascia.
138	The shear modulus (G) was calculated from the shear wave propagation speed (V) and muscle density
139	(ρ) as follows:
140	$G = \rho V^2$
141	The muscle density is assumed to be 1 g/cm ³ (Nakamura et al., 2014). The ultrasound images of all
142	positions are shown in Figure 2.
143	
144	Statistical analyses
145	Statistical analyses were performed using SPSS software (version 22; IBM Japan, Tokyo, Japan). The
146	reproducibility of the measurements was assessed using the intraclass correlation coefficient (ICC) (1,
147	3), as calculated from the data measured three times at each position.
148	The Shapiro-Wilk test was performed to confirm the normality of the data. The results

149	revealed that the normality of the data was not confirmed in Flex, Ext, Hab, and HabIR. Thus, the
150	shear modulus at each stretching position was compared with that at Rest by the Wilcoxon signed-
151	rank test with Bonferroni correction. Furthermore, in stretching positions that exhibited a significant
152	difference compared to Rest, the Friedman test was performed, followed by the Wilcoxon signed-rank
153	test with Bonferroni correction as a multiple comparison test. In addition, for the cases in which the
154	multiple comparison test did not reveal a significant difference between positions, the effect size (r)
155	was calculated. An alpha level of 0.05 was used in all statistical tests. The effect sizes (r) of 0.1, 0.3,
156	and 0.5 were considered small, medium, and large effect sizes, respectively (Cohen, 1988).
157	
158	RESULTS
159	The shear modulus measurements were reproducible, as shown in Table 1, because the ICCs (1,3)
160	were over 0.8 in all positions.
161	The shear moduli at each position are shown in Figure 3. The Wilcoxon signed-rank test
162	with Bonferroni correction demonstrated that the shear modulus at all positions was significantly
163	higher than that of Rest ($P < .01$), except for Flex ($P = .306$). In the Friedman test, a significant main
164	effect ($P < .001$) was observed, and the multiple comparison tests revealed that the shear modulus was
165	significantly higher at IR2, Ext, Hab, HabER, and HabIR compared with ER2 ($P < .001$). The shear

167 differences between the other positions.

168	In addition, we calculated the effect sizes (r) of the five stretching positions in which
169	multiple comparisons revealed no significant differences (Table 2). The effect sizes were relatively
170	large for the differences between Ext and HabIR (0.457), Ext and IR2 (0.621), HabER and IR2 (0.559),
171	Hab and IR2 (0.549), and Hab and HabIR (0.498).
172	
173	DISCUSSION
174	In this study, we investigated the effective stretching position of the coracobrachialis muscle using
175	ultrasound SWE imaging. The results revealed that the shear moduli at ER2, IR2, Ext, Hab, HabER,
176	and HabIR were significantly higher than those at Rest, except for Flex; moreover, the shear moduli
177	were significantly higher at IR2, Ext, Hab, HabER, and HabIR compared with ER2. Furthermore, the
178	shear modulus was significantly higher at Ext than at HabIR. The way to determine the effective
179	stretching positions followed previous studies (Umehara et al., 2017; Nishishita et al., 2018; Ogawa
180	et al., 2020; Umegaki et al., 2015). These results partially support our hypothesis that the effective
181	stretching position of the coracobrachialis muscle could be extended or horizontal abduction. To the
182	best of our knowledge, this is the first study to investigate the effective stretching position of the
183	coracobrachialis muscle using SWE.
184	The stretching of a muscle is considerably affected by its moment arm. Considering tendon

185	excursion methods (Maganaris et al., 2000), a muscle could be stretched with a joint movement in the
186	direction opposite to its moment arm. The coracobrachialis muscle has a moment arm of shoulder
187	flexion. Additionally, it also has a moment arm of horizontal adduction and external rotation in
188	shoulder abduction at 90° and external rotation at 90°. Therefore, we supposed that the muscle would
189	not be stretched at the position of Flex and ER2 because the joint was moved in the direction defined
190	by the moment arm. By contrast, it could be stretched at Hab, HabER, or HabIR because of its joint
191	movement in the direction opposite to the moment arm.
192	It is important to identify the recommended stretching position for the coracobrachialis
193	muscle for clinical applications. Compared with HabIR, there was no significant difference in the shear
194	modulus of Hab and HabER, but the shear modulus of Ext was significantly higher. The effect sizes
195	were relatively high for the difference between Ext, Hab, HabER, and IR2 or HabIR. These results
196	suggest that the coracobrachialis muscle can be effectively stretched at Ext, Hab, or HabER; therefore,
197	these stretching positions are particularly recommended.
198	Considering the anatomy, the coracobrachialis muscle is attached to the coracoid process. Thus,
199	shortening of the coracobrachialis muscle could cause anterior tilt of the scapula. This is serious
200	problem in clinical settings because the scapular anterior tilt cause subacromial impingement and also
201	limits upper limb elevation. Therefore, we believe that our findings can be applied to patients who
202	have limitation in upper limb elevation. Moreover, the musculocutaneous nerve passes though the

203	coracobrachialis muscle. Stiffness of the coracobrachialis muscle can cause strangulation of the
204	musculocutaneous nerve and limit elbow flexion (Pecina and Bojanic, 1993). The present findings
205	may be useful for these patients as well. This study has some limitations. First, the influence of
206	muscle activity could not be completely eliminated because muscle activity was not measured.
207	However, the influence of muscle activity on the shear modulus may be negligible as participants were
208	instructed to relax, and the investigator sufficiently supported their limb. Second, we did not stabilize
209	the scapula to which the coracobrachialis muscle attaches. However, it is considered that the scapula
210	could be partly secured by the plinth because the stretching was performed in the supine position.
211	Third, the shear modulus could be changed in stretching and rest time. However, we kept the stretching
212	time as short as possible, and we put participants' arm the initial position for avoiding changes in
213	muscle elasticity when it took long time for the ultrasound measurement. Additionally, we had
214	sufficient resting time between the stretching procedures, randomized the order of stretching, and
215	compared changes in elastic modulus within subjects. Therefore, the stretching and resting time effects
216	on the muscle elasticity might be negligible. Forth, we investigated only the acute effects of stretching
217	position. Therefore, it is unclear whether the intervention program affects the coracobrachialis muscle
218	elongation. Further studies need to examine the effects of stretching interventions in patients or elderly
219	people.

220 In conclusion, we investigated the effective stretching positions of the coracobrachialis

221	muscle using ultrasound SWE imaging. The results indicated that the coracobrachialis muscle was
222	stretched in the following five positions: internal rotation at 90° abduction, extension, horizontal
223	abduction, horizontal abduction with external rotation, and horizontal abduction with internal rotation.
224	Among them, the extension, horizontal abduction, and horizontal abduction with external rotation
225	stretched the coracobrachialis muscle to a maximum extent based on their higher effect sizes. These
226	findings are clinically useful in patients with a limited range of motion owing to increased
227	coracobrachialis muscle stiffness.
228	
229	ACKNOWLEDGEMENTS
230	We would like to thank Ms. Ibuki and Editage (www.editage.jp) for assisting in English language
231	editing.
232	
233	CONFLICT OF INTEREST
234	The authors have no conflicts of interest to declare.
235	
236	AUTHORS' CONTRIBUTIONS
237	K.K., J.U., S.N., and N.I. conceived and designed the research. K.K., J.U., and S.N. performed the
238	experiment and analyzed the data. K.K., J.U., S.N., and N.I. interpreted the results. K.K., J.U., and

- 239 S.N. wrote the manuscript. J.U., S.N., and N.I. edited and revised the manuscript. All authors have
- approved the final version of the manuscript.
- 241

242 **REFERENCES**

- 243 Bakhsh, W., Nicandri, G., 2018. Anatomy and Physical Examination of the Shoulder. Sports Med Arthrosc
- 244 Rev 26, e10-e22.
- Bandy, W.D., Irion, J.M., 1994. The effect of time on static stretch on the flexibility of the hamstring
- 246 muscles. Phys. Ther. 74, 845-850; discussion 850-842.
- 247 Bassett, R.W., Browne, A.O., Morrey, B.F., An, K.N., 1990. Glenohumeral muscle force and moment
- 248 mechanics in a position of shoulder instability. J. Biomech. 23, 405-415.
- 249 Boyce, D., Brosky, J.A., Jr., 2008. Determining the minimal number of cyclic passive stretch repetitions
- recommended for an acute increase in an indirect measure of hamstring length. Physiother. Theory Pract.24, 113-120.
- Brandenburg, J.E., Eby, S.F., Song, P., Zhao, H., Brault, J.S., Chen, S., An, K.N., 2014. Ultrasound
 elastography: the new frontier in direct measurement of muscle stiffness. Arch. Phys. Med. Rehabil. 95,
 2207-2219.
- 255 Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. L. Erlbaum Associates.
- 256 Cowan, P.T., Mudreac, A., Varacallo, M., 2020. Anatomy, Back, Scapula, StatPearls. StatPearls Publishing
- 257 Copyright © 2020, StatPearls Publishing LLC., Treasure Island (FL).
- Koo, T.K., Guo, J.Y., Cohen, J.H., Parker, K.J., 2013. Relationship between shear elastic modulus and
 passive muscle force: an ex-vivo study. J. Biomech. 46, 2053-2059.
- 260 Koo, T.K., Guo, J.Y., Cohen, J.H., Parker, K.J., 2014. Quantifying the passive stretching response of human
- tibialis anterior muscle using shear wave elastography. Clin. Biomech. (Bristol, Avon) 29, 33-39.
- 262 Kusano, K., Nishishita, S., Nakamura, M., Tanaka, H., Umehara, J., Ichihashi, N., 2017. Acute effect and
- time course of extension and internal rotation stretching of the shoulder on infraspinatus muscle hardness.
- 264 J. Shoulder Elbow Surg. 26, 1782-1788.
- 265 Lee, B., Kim, D., Jang, Y., Jin, H., 2020. Three-dimensional in vivo scapular kinematics and
- scapulohumeral rhythm: a comparison between active and passive motion. J. Shoulder Elbow Surg. 29,
- 267 185-194.
- 268 Ludewig, P.M., Phadke, V., Braman, J.P., Hassett, D.R., Cieminski, C.J., LaPrade, R.F., 2009. Motion of
- the shoulder complex during multiplanar humeral elevation. J. Bone Joint Surg. Am. 91, 378-389.
- 270 Maganaris, C.N., Baltzopoulos, V., Sargeant, A.J., 2000. In vivo measurement-based estimations of the

- 271 human Achilles tendon moment arm. Eur. J. Appl. Physiol. 83, 363-369.
- 272 Maisetti, O., Hug, F., Bouillard, K., Nordez, A., 2012. Characterization of passive elastic properties of the
- 273 human medial gastrocnemius muscle belly using supersonic shear imaging. J. Biomech. 45, 978-984.
- 274 Matsuki, K., Matsuki, K.O., Mu, S., Yamaguchi, S., Ochiai, N., Sasho, T., Sugaya, H., Toyone, T., Wada,
- 275Y., Takahashi, K., Banks, S.A., 2011. In vivo 3-dimensional analysis of scapular kinematics: comparison
- 276 of dominant and nondominant shoulders. J. Shoulder Elbow Surg. 20, 659-665.
- 277 Nakamura, M., Ikezoe, T., Kobayashi, T., Umegaki, H., Takeno, Y., Nishishita, S., Ichihashi, N., 2014.
- 278 Acute effects of static stretching on muscle hardness of the medial gastrocnemius muscle belly in humans:
- 279 an ultrasonic shear-wave elastography study. Ultrasound Med. Biol. 40, 1991-1997.
- 280 Nishishita, S., Hasegawa, S., Nakamura, M., Umegaki, H., Kobayashi, T., Ichihashi, N., 2018. Effective
- 281 stretching position for the supraspinatus muscle evaluated by shear wave elastography in vivo. J. Shoulder
- 282 Elbow Surg. 27, 2242-2248.
- 283 Ogawa, T., Saeki, J., Ichihashi, N., 2020. The effect of hip flexion angle on muscle elongation of the hip 284adductor muscles during stretching. J. Biomech. 101, 109649.
- 285 Peat, M., 1986. Functional anatomy of the shoulder complex. Phys. Ther. 66, 1855-1865.
- 286 Pecina, M., Bojanic, I., 1993. Musculocutaneous nerve entrapment in the upper arm. Int. Orthop. 17, 232-287 234.
- 288 Ryan, E.D., Beck, T.W., Herda, T.J., Hull, H.R., Hartman, M.J., Stout, J.R., Cramer, J.T., 2008. Do practical
- 289 durations of stretching alter muscle strength? A dose - Response study. Med. Sci. Sports Exerc. 40, 1529-290 1537.
- 291 Schenkman, M., Rugo de Cartaya, V., 1987. Kinesiology of the shoulder complex. J. Orthop. Sports Phys.
- 292 Ther. 8, 438-450.
- 293 Spiegl, U.J., Faucett, S.C., Millett, P.J., 2014. Traumatic Rupture of the Coracobrachialis Muscle: A Case 294 Report. JBJS Case Connect 4, e54-e54.
- 295 Struyf, F., Nijs, J., Baeyens, J.P., Mottram, S., Meeusen, R., 2011. Scapular positioning and movement in
- 296 unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand. J. Med. Sci.
- 297 Sports 21, 352-358.
- 298 Timmons, M.K., Thigpen, C.A., Seitz, A.L., Karduna, A.R., Arnold, B.L., Michener, L.A., 2012. Scapular 299
- kinematics and subacromial-impingement syndrome: a meta-analysis. J Sport Rehabil 21, 354-370.
- 300 Tsai, N.T., McClure, P.W., Karduna, A.R., 2003. Effects of muscle fatigue on 3-dimensional scapular
- 301 kinematics. Arch. Phys. Med. Rehabil. 84, 1000-1005.
- 302 Umegaki, H., Ikezoe, T., Nakamura, M., Nishishita, S., Kobayashi, T., Fujita, K., Tanaka, H., Ichihashi, N.,
- 303 2015. The effect of hip rotation on shear elastic modulus of the medial and lateral hamstrings during 304 stretching. Man. Ther. 20, 134-137.
- 305 Umehara, J., Ikezoe, T., Nishishita, S., Nakamura, M., Umegaki, H., Kobayashi, T., Fujita, K., Ichihashi,
- 306 N., 2015. Effect of hip and knee position on tensor fasciae latae elongation during stretching: An ultrasonic

- 307 shear wave elastography study. Clin. Biomech. (Bristol, Avon) 30, 1056-1059.
- 308 Umehara, J., Nakamura, M., Fujita, K., Kusano, K., Nishishita, S., Araki, K., Tanaka, H., Yanase, K.,
- 309 Ichihashi, N., 2017. Shoulder horizontal abduction stretching effectively increases shear elastic modulus of
- 310 pectoralis minor muscle. J. Shoulder Elbow Surg. 26, 1159-1165.

311

312

313	Table 1. Intra-observer reliability for the shear wave measurement in each position									
	Rest	ER2	IR2	Flex	Ext	Hab	HabER	HabIR		
	0.990	0.877	0.928	0.841	0.990	0.990	0.906	0.927		
314	Rest: sho	ulder 20° ab	duction, ER	2: shoulder	maximal ex	ternal rotati	on at 90° abo	luction,		
315	IR2: shoulder maximal internal rotation at 90° abduction, Flex: shoulder maximal flexion,									
316	Ext: shoulder maximal extension, Hab: shoulder maximal horizontal abduction at 90° abduction,									
317	HabER: shoulder maximal horizontal abduction and maximal external rotation at 90° abduction									
318	HabIR: shoulder maximal horizontal abduction and maximal internal rotation at 90° abduction.									
319	The value	s represent	intraclass co	orrelation co	efficients (1	,3).				
320										

321 Table 2. Effect size between the stretching positions

	Ext-	Ext-	Ext-	Ext-	Hab-	Hab-	Hab-	HabER-	HabER-	HabIR-
	IR2	HabIR	HabER	Hab	IR2	HabIR	HabER	IR2	HabIR	IR2
Effect size (r)	0.621	0.693	0.457	0.169	0.549	0.498	0.221	0.559	0.231	0.046

322 Rest: shoulder 20° abduction, ER2: shoulder maximal external rotation at 90° abduction,

323 IR2: shoulder maximal internal rotation at 90° abduction, Flex: shoulder maximal flexion,

324 Ext: shoulder maximal extension, Hab: shoulder maximal horizontal abduction at 90° abduction,

325 HabER: shoulder maximal horizontal abduction and maximal external rotation at 90° abduction,

326 HabIR: shoulder maximal horizontal abduction and maximal internal rotation at 90° abduction.

327 The values represent the effect sizes of *r*.

328

- 329
- 330 Figure 1. Measurement positions
- Rest: shoulder 20° abduction, ER2: shoulder maximal external rotation at 90° abduction,
- 332 IR2: shoulder maximal internal rotation at 90° abduction, Flex: shoulder maximal flexion,
- 333 Ext: shoulder maximal extension, Hab: shoulder maximal horizontal abduction at 90° abduction,
- 334 HabER: shoulder maximal horizontal abduction and maximal external rotation at 90° abduction,
- 335 HabIR: shoulder maximal horizontal abduction and maximal internal rotation at 90° abduction.
- 336

338 Fig. 2. The ultrasound image of the coracobrachialis muscle at Rest.

340 Figure 3. The shear modulus of the coracobrachialis muscle in the positions assessed.

Rest: shoulder 20° abduction, ER2: shoulder maximal external rotation at 90° abduction,

342 IR2: shoulder maximal internal rotation at 90° abduction, Flex: shoulder maximal flexion,

343 Ext: shoulder maximal extension, Hab: shoulder maximal horizontal abduction at 90° abduction,

344 HabER: shoulder maximal horizontal abduction and maximal external rotation at 90° abduction,

345 HabIR: shoulder maximal horizontal abduction and maximal internal rotation at 90° abduction.

346 * Positions that showed a significant difference compared to Rest

347 † Positions that showed a significant difference compared to ER2

348 ‡ Positions that showed a significant difference compared to HabIR

349 Whiskers indicate the range of data, and the line and box represent the median and quartile, 350 respectively.